China OEM High Quality Forging Quick Release Coupling Drive Shaft Cardan Shaft Transmission Telescopic Cardan Shaft

Product Description

High quality forging quick release coupling drive shaft cardan shaft 

Description:
The SWP-A long flexible welded universal joint is a Universal joint designed to transmit power between 2 misaligned shafts. It is a flexible coupling, which means it can compensate for misalignment up to 25 degrees. The SWP-A long bend welded universal coupling is made of 35CrMo material and comes in various sizes to meet the needs of different applications. SWP-A long bend welded universal couplings are widely used in mechanical applications such as rolling mills, punches, straighteners, crushers, ship transmissions, papermaking equipment, ordinary machinery, water pump equipment, test benches, etc.

Features:
1. Possess the ability to compensate for large angles.
2. The structure is compact and reasonable. The SWP-A 
universal coupling is equipped with an integrated fork, making it more reliable in carrying capacity.
3. Carrying capacity. Compared to other types of rotating joint shafts with the same diameter, it provides more torque, limits the turning diameter of mechanical equipment, and has a wider range.
4. High transmission efficiency. Its transmission efficiency is 98-99.8%, suitable for high-power transmission and has energy-saving effect.
5. Smooth carrying, low noise, easy disassembly and maintenance.

Paramters:

Type Tactical diameter
D
mm
 
Nominal torque
Tn
kN·m
Fatique torque Tf
kN·m
Axis
angle
β
(°)
Stretch
length
S
mm
Size(mm) Rotary
inertia
kg·m2
 
Mass
kg
Lmin D1
js11
D2
H7
D3 E E1 B×h h1 L1 n-d Lmin Increase
100
Lmin Increase
100
SWP160A 160 16 8 ≤10 50 660 140 95 114 15 4 20×12 6 85 6-13 0.13 0.0059 47 2.1
SWP180A 180 20 10 ≤10 60 752 155 105 121 15 4 24×14 7 95 6-15 0.22 0.0072 60 2.3
SWP200A 200 31.5 16 ≤10 70 823 175 125 17 17 5 28×16 8 110 8-15 0.37 0.0114 81 3.4
SWP225A 225 40 20 ≤10 76 933 196 135 152 20 5 32×18 9 130 8-17 0.63 0.5710 109 6.6
SWP250A 250 63 31.5 ≤10 80 978 218 150 168 25 5 40×25 12.5 135 8-19 1.02 0.0407 147 7.3
SWP285A 285 90 45 ≤10 100 1133 245 170 194 27 7 40×30 15 150 8-21 2.17 0.0702 241 9.4
SWP315A 315 140 63 ≤10 110 1250 280 185 219 32 7 40×30 15 170 10-23 3.86 0.1144 322 12.0
SWP350A 350 180 90 ≤10 120 1380 310 210 245 35 8 50×32 16 185 10-23 6.66 0.1663 428 13.6
SWP390A 390 250 112 ≤10 120 1495 345 235 273 40 8 70×36 18 205 10-25 11.53 0.2695 566 18.0
SWP435A 435 355 160 ≤10 150 1710 385 255 299 42 10 80×40 20 235 16-28 21.81 0.3645 932 20.0
SWP480A 480 450 224 ≤10 170 1910 425 275 351 47 12 90×45 22.5 265 16-31 38.04 0.7571 1294 28.0
SWP550A 550 710 315 ≤10 190 2135 492 320 402 50 12 100×45 22.5 290 16-31 61.28 1.1842 1744 35.7
SWP600A 600 1000 500 ≤10 210 3580 544 380 450 55 15 90×55 27.5 360 22-34 98.63 1.7159 2330 40.5
SWP640A 640 1250 630 ≤10 230 2685 575 385 480 60 15 100×60 30 385 18-38 167.67 2.3080 3153 48.3

·Note:L is the length of installation,including the value of S/Z shrinkage.

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.


FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Customization:
Available

|

Customized Request

cardan shaft

What factors should be considered when selecting the right cardan shaft for an application?

When selecting a cardan shaft for a specific application, several crucial factors need to be considered to ensure optimal performance and longevity. The following factors should be taken into account during the selection process:

1. Torque Requirements:

– One of the primary considerations is the torque requirements of the application. The cardan shaft should be capable of transmitting the required torque without exceeding its rated capacity. It is essential to determine the maximum torque that the shaft will experience during operation and select a cardan shaft that can handle that torque while providing an appropriate safety margin.

2. Speed and RPM:

– The rotational speed or RPM (revolutions per minute) of the application is another critical factor. Cardan shafts have specific rotational speed limits, and exceeding these limits can lead to premature wear, vibration, and failure. It is crucial to select a cardan shaft that is rated for the speed requirements of the application to ensure reliable and smooth operation.

3. Angle of Misalignment:

– The angle of misalignment between the driving and driven components should be considered. Cardan shafts can accommodate angular misalignment up to a certain degree, typically specified by the manufacturer. It is important to select a cardan shaft that can handle the anticipated misalignment angle to ensure proper power transmission and prevent excessive wear or binding.

4. Operating Conditions:

– The operating conditions of the application play a vital role in cardan shaft selection. Factors such as temperature, humidity, presence of corrosive agents, and exposure to vibration or shock need to be considered. It is crucial to select a cardan shaft that is designed to withstand the specific operating conditions to ensure durability and reliability.

5. Length and Size:

– The length and size of the cardan shaft should be chosen appropriately for the application. The length of the shaft affects its ability to absorb vibrations and accommodate misalignments. It is important to consider the available space and the required length to ensure proper fitment and functionality. Additionally, the size of the cardan shaft should be selected based on the load requirements and the available torque capacity.

6. Maintenance and Serviceability:

– Consideration should be given to the ease of maintenance and serviceability of the cardan shaft. Some applications may require regular inspection, lubrication, or replacement of certain components. It is beneficial to select a cardan shaft that allows convenient access for maintenance and incorporates features such as grease fittings or easily replaceable universal joints.

7. Cost and Budget:

– Finally, the cost and budget constraints should be taken into account. Different cardan shaft manufacturers and suppliers may offer varying prices for their products. It is important to balance the desired quality, performance, and durability of the cardan shaft with the available budget.

By carefully considering these factors, engineers and designers can select the right cardan shaft for the application, ensuring optimal performance, longevity, and reliability. Collaboration with cardan shaft manufacturers and suppliers can also provide valuable insights and assistance in making the appropriate selection based on the specific requirements of the application.

cardan shaft

Are there any emerging trends in cardan shaft technology, such as lightweight materials?

Yes, there are several emerging trends in cardan shaft technology, including the use of lightweight materials and advancements in design and manufacturing techniques. These trends aim to improve the performance, efficiency, and durability of cardan shafts. Here are some of the notable developments:

1. Lightweight Materials:

– The automotive and manufacturing industries are increasingly exploring the use of lightweight materials in cardan shaft construction. Materials such as aluminum alloys and carbon fiber-reinforced composites offer significant weight reduction compared to traditional steel shafts. The use of lightweight materials helps reduce the overall weight of the vehicle or machinery, leading to improved fuel efficiency, increased payload capacity, and enhanced performance.

2. Advanced Composite Materials:

– Advanced composite materials, such as carbon fiber and fiberglass composites, are being utilized in cardan shafts to achieve a balance between strength, stiffness, and weight reduction. These materials offer high tensile strength, excellent fatigue resistance, and corrosion resistance. By incorporating advanced composites, cardan shafts can achieve reduced weight while maintaining the necessary structural integrity and durability.

3. Enhanced Design and Optimization:

– Advanced computer-aided design (CAD) and simulation techniques are being employed to optimize the design of cardan shafts. Finite element analysis (FEA) and computational fluid dynamics (CFD) simulations allow for better understanding of the structural behavior, stress distribution, and performance characteristics of the shafts. This enables engineers to design more efficient and lightweight cardan shafts that meet specific performance requirements.

4. Additive Manufacturing (3D Printing):

– Additive manufacturing, commonly known as 3D printing, is gaining traction in the production of cardan shafts. This technology allows for complex geometries and customized designs to be manufactured with reduced material waste. Additive manufacturing also enables the integration of lightweight lattice structures, which further enhances weight reduction without compromising strength. The flexibility of 3D printing enables the production of cardan shafts that are tailored to specific applications, optimizing performance and reducing costs.

5. Surface Coatings and Treatments:

– Surface coatings and treatments are being employed to improve the durability, corrosion resistance, and friction characteristics of cardan shafts. Advanced coatings such as ceramic coatings, diamond-like carbon (DLC) coatings, and nanocomposite coatings enhance the surface hardness, reduce friction, and protect against wear and corrosion. These treatments extend the lifespan of cardan shafts and contribute to the overall efficiency and reliability of the power transmission system.

6. Integrated Sensor Technology:

– The integration of sensor technology in cardan shafts is an emerging trend. Sensors can be embedded in the shafts to monitor parameters such as torque, vibration, and temperature. Real-time data from these sensors can be used for condition monitoring, predictive maintenance, and performance optimization. Integrated sensor technology allows for proactive maintenance, reducing downtime and improving the overall operational efficiency of vehicles and machinery.

These emerging trends in cardan shaft technology, including the use of lightweight materials, advanced composites, enhanced design and optimization, additive manufacturing, surface coatings, and integrated sensor technology, are driving advancements in the performance, efficiency, and reliability of cardan shafts. These developments aim to meet the evolving demands of various industries and contribute to more sustainable and high-performing power transmission systems.cardan shaft

Can you explain the components and structure of a cardan shaft system?

A cardan shaft system, also known as a propeller shaft or drive shaft, consists of several components that work together to transmit torque and rotational power between non-aligned components. The structure of a cardan shaft system typically includes the following components:

1. Shaft Tubes:

– The shaft tubes are the main structural elements of a cardan shaft system. They are cylindrical tubes made of durable and high-strength materials such as steel or aluminum alloy. The shaft tubes provide the backbone of the system and are responsible for transmitting torque and rotational power. They are designed to withstand high loads and torsional forces without deformation or failure.

2. Universal Joints:

– Universal joints, also known as U-joints or Cardan joints, are crucial components of a cardan shaft system. They are used to connect and articulate the shaft tubes, allowing for angular misalignment between the driving and driven components. Universal joints consist of a cross-shaped yoke with needle bearings at each end. The yoke connects the shaft tubes, while the needle bearings enable the rotational motion and flexibility required for misalignment compensation. Universal joints allow the cardan shaft system to transmit torque even when the driving and driven components are not perfectly aligned.

3. Slip Yokes:

– Slip yokes are components used in cardan shaft systems that can accommodate axial misalignment. They are typically located at one or both ends of the shaft tubes and provide a sliding connection between the shaft and the driving or driven component. Slip yokes allow the shaft to adjust its length and compensate for changes in the distance between the components. This feature is particularly useful in applications where the distance between the driving and driven components can vary, such as vehicles with adjustable wheelbases or machinery with variable attachment points.

4. Flanges and Yokes:

– Flanges and yokes are used to connect the cardan shaft system to the driving and driven components. Flanges are typically bolted or welded to the ends of the shaft tubes and provide a secure connection point. They have a flange face with bolt holes that align with the corresponding flange on the driving or driven component. Yokes, on the other hand, are cross-shaped components that connect the universal joints to the flanges. They have holes or grooves that accommodate the needle bearings of the universal joints, allowing for rotational motion and torque transfer.

5. Balancing Weights:

– Balancing weights are used to balance the cardan shaft system and minimize vibrations. As the shaft rotates, imbalances in the mass distribution can lead to vibrations, noise, and reduced performance. Balancing weights are strategically placed along the shaft tubes to counterbalance these imbalances. They redistribute the mass, ensuring that the rotational components of the cardan shaft system are properly balanced. Proper balancing improves stability, reduces wear on bearings and other components, and enhances the overall performance and lifespan of the shaft system.

6. Safety Features:

– Some cardan shaft systems incorporate safety features to protect against mechanical failures. For example, protective guards or shielding may be installed to prevent contact with rotating components, reducing the risk of accidents or injuries. In applications where excessive forces or torques can occur, cardan shaft systems may include safety mechanisms such as shear pins or torque limiters. These features are designed to protect the shaft and other components from damage by shearing or disengaging in case of overload or excessive torque.

In summary, a cardan shaft system consists of shaft tubes, universal joints, slip yokes, flanges, and yokes, as well as balancing weights and safety features. These components work together to transmit torque and rotational power between non-aligned components, allowing for angular and axial misalignment compensation. The structure and components of a cardan shaft system are carefully designed to ensure efficient power transmission, flexibility, durability, and safety in various applications.

China OEM High Quality Forging Quick Release Coupling Drive Shaft Cardan Shaft Transmission Telescopic Cardan Shaft  China OEM High Quality Forging Quick Release Coupling Drive Shaft Cardan Shaft Transmission Telescopic Cardan Shaft
editor by CX 2024-03-11